
research papers

946 doi:10.1107/S0907444913003454 Acta Cryst. (2013). D69, 946–959

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Resolution of structural heterogeneity in dynamic
crystallography

Zhong Ren,a* Peter W. Y.

Chan,b,c Keith Moffat,a,d Emil F.

Pai,b,c,e William E. Royer Jr,f
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Dynamic behavior of proteins is critical to their function.

X-ray crystallography, a powerful yet mostly static technique,

faces inherent challenges in acquiring dynamic information

despite decades of effort. Dynamic ‘structural changes’ are

often indirectly inferred from ‘structural differences’ by

comparing related static structures. In contrast, the direct

observation of dynamic structural changes requires the

initiation of a biochemical reaction or process in a crystal.

Both the direct and the indirect approaches share a common

challenge in analysis: how to interpret the structural hetero-

geneity intrinsic to all dynamic processes. This paper presents

a real-space approach to this challenge, in which a suite of

analytical methods and tools to identify and refine the mixed

structural species present in multiple crystallographic data sets

have been developed. These methods have been applied to

representative scenarios in dynamic crystallography, and

reveal structural information that is otherwise difficult to

interpret or inaccessible using conventional methods.
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1. Introduction

Structural differences introduced into a protein structure

resting in crystal lattices can be observed with the aim of

testing hypothesized mechanisms of its function. Comparison

of the captured structures before and after a controlled

perturbation at atomic resolution provides the major source of

dynamic structural information. However, structural hetero-

geneity is intrinsic to any dynamic process. The presence of

mixed structural species, such as those associated with

substrate, intermediate and product complexes, often

complicates structural interpretation and thus casts doubt on

the mechanisms.

This common practice in protein crystallography involves

multiple data sets acquired from crystals of chemically modi-

fied protein. For example, site-directed mutagenesis, cocrys-

tallization and soaking of native crystals with various reagents

(cofactor, substrate, inhibitor or product) are commonly used

techniques. In a temperature-scanning cryocrystallographic

experiment, many difference electron-density maps as a

function of temperature are required (Yang et al., 2011).

Despite different experimental approaches, a common theme

emerges: the same data-collection protocol is repeated while a

single parameter is varied to perturb the molecular structure

in the crystals from its resting state. Applying the term

‘dynamic’ here refers in a broader sense to structural changes

that occur in response to a single controlled external stimulus.

Many other forms of stimuli may be applied to induce struc-

tural changes in crystals, e.g. gases (O2, CO or NO), pH,

redox potential, pressure, chemical modifications including
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mutations or electromagnetic fields, X-rays or other radiation,

most notably light. Even an uncontrolled accidental variable

may yield informative structural differences. The different

molecular environments arising from crystal packing, alter-

native crystal lattices and noncrystallographic symmetry

(NCS) also provide structural variants that may reveal

important structural dynamics (Ren et al., 2012), although

these differences are often dismissed as uninteresting artifacts

of crystallization. Despite the differing natures of the external

stimuli, structural differences or changes take two distinct

forms (which are most often observed in combination):

changes in structural conformation arising from atomic

motion and changes in the relative proportions of several

distinct static conformations. In this post-structural genomics

era, the introduction of an extra dimension in addition to the

three spatial dimensions expands this traditionally static

technique into dynamic crystallography. In this technique, a

desired control parameter is varied to initiate a reaction, to

stimulate a response or to perturb a structure from its resting

state. Meanwhile, a sequence of ever-evolving structures is

monitored in order to obtain dynamic insights into the

working machinery of a protein. In this sense, dynamic crys-

tallography aims at feasible experimental approaches that

include three integral parts: (i) the introduction of a controlled

stimulus to a responsive macromolecular system, (ii) the

repeated collection of crystalloraphic data sets as the condi-

tion varies and (iii) the extraction of structural and population

changes as function of the control parameter. The majority of

data-collection techniques (ii) will remain identical to

everyday static cryocrystallography, while experimental

control (i) and joint data analysis (iii)

require innovative approaches. A recent

study of DNA polymerase � serves as a

good example of our definition of

dynamic crystallography (Nakamura et

al., 2012).

The key to a successful experiment in

dynamic crystallography is to generate

and accumulate desired structural

species to a detectable concentration. A

common difficulty is structural hetero-

geneity (Fig. 1 and Supplementary

Movie 11). It is noteworthy that

experimentally achieving an effectively

homogeneous structural species other

than the resting state in a dynamic

experiment is seldom practical or

feasible. Nor is it necessary if the

following technique becomes available:

the ability to isolate data pertaining to a

single structural species from a mixture,

a process referred to as analytical trap-

ping (Rajagopal, Kostov et al., 2004).

The limited ability to isolate a single

structural species from a mixture has

hindered structural dynamics studies of

many biologically important systems by

crystallography. The root cause of the current limitation is the

tradition of one structure or one ensemble per data set in

crystallography. Structural refinement has been strictly on

a per-data-set basis. We describe a new methodology, along

with its underlying theoretical background and computational

algorithms, that identifies and refines several structures

simultaneously against a much larger number of data sets. The

new capability to characterize common structural species from

multiple data sets allows us to numerically deconvolute

structural constituents in an evolving mixture, none of which

ever attains a population large enough to be observed by

direct measurement of a nearly homogeneous state. We apply

this methodology to several experimental scenarios and

quantitatively analyze the structural heterogeneity of electron

density using a suitable strategy for each unique case.

2. Methods

This central section of this article describes a computational

procedure that aims to extract a small set of distinct structures

to simultaneously satisfy a large set of experimental electron-

density maps. We recognize that this computational problem

posed in dynamic crystallography, as formulated in x2.1, does

not have a unique mathematical solution. We apply singular

value decomposition (SVD) to jointly analyze the large and

diverse data sets observed in a dynamic crystallographic

experiment. x2.2 provides a brief summary of SVD and
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Figure 1
Fractional concentrations of various states in a hypothetical reaction. A hypothetical reaction starts
from a ground state (gold), 80% of which enters the reaction at time 0 and first converts to an
intermediate state (green) at a unit rate. This intermediate then converts to a second intermediate
state (red) at a slower rate of 0.9 s�1. Finally, the product (blue) forms at a much slower rate of
0.01 s�1, which allows the intermediate (red) to accumulate to a high concentration. At the end of
the reaction, there is still 20% of ground state that never enters the reaction. In reality, this
percentage could be very large despite best efforts owing to practical reasons in reaction initiation
in crystals (Fig. 3b). Fractional concentrations as function of time are plotted on logarithmic and
linear time scales.

1 Supplementary material has been deposited in the IUCr electronic archive
(Reference: MV5027).



presents several goals that can be achieved by application of

SVD to our dynamic data sets. However, the lack of a unique

algebraic solution first requires the incorporation of structural

knowledge into the procedure, which is facilitated by our

choice of the real-space refinement approach presented in

x2.3. Secondly, the subspace with much reduced dimension-

ality obtained by SVD provides a good guideline for the

search in real-space refinement (x2.4). These combined efforts

usually lead to either a unique set of

structural solutions that fits the data sets

or a small number of equally good fits

from which one must choose. A closely

related topic of minimal parameteriza-

tion of protein structures is briefly

mentioned in x2.5, which greatly eases

the actual implementation of real-space

refinement. Finally, several possible

evaluations of real-space fitting are

discussed in x2.6. An overview of the

entire procedure is summarized in the

scheme in Fig. 2.

2.1. Data matrix in real space

We adopt a real-space approach to

take advantage of its unique feature of

locality. Firstly, structural signals are

often localized in real space, e.g. near

the active site of an enzyme or the

chromophore in a photoreceptor, but

they are distributed across the entire

reciprocal (diffraction) space. However,

experimental noise is evenly distributed

in both real space and reciprocal space.

Secondly, local structural adjustment

affects only a small subset of nearby

grid points in an electron-density map in

real space, but affects the entire data set

in reciprocal space. If a known refer-

ence structure such as a native state is

available in the isomorphous form of

the perturbed structures, difference

density maps are usually preferred

because of their sensitivity to small

structural changes (Fig. 3b). However,

see example 3 for a non-isomorphous

case. A set of (difference) electron-

density maps are arranged to form a

large rectangular data matrix A (Fig. 2),

in which each column represents a map

at all grid points and each row repre-

sents a density value at a specific grid

point as a function of the controlled

variable. Matrix A may contain between

hundreds and millions of grid points or

rows, denoted M, and between a few

and hundreds of conditions or columns,

denoted N. A typical data matrix A is

therefore very elongated, with M >> N.

Assume that each of the N observed

maps in matrix A is a linear combina-
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Figure 2
Scheme of the computational procedure. The observed original maps are first linearized and
arranged in a large rectangular matrix A. SVD is performed on the matrix to produce factorized
matrices U, W and VT. Judging by the ranking of singular values in W and the map features, several
outstanding elemental maps and their corresponding compositions are selected from U and VT.
Multiplication of the selected singular triplets results in noise-filtered maps in matrix A0. On the
other hand, initial basis maps are calculated from manually built structures that are heterogeneously
mixed in the observations. Each trial structure is minimally parameterized to lessen the requirement
for stereochemical restraints. Least-squares fitting of linear combinations of the basis maps to all
maps in A0 results in the coefficient matrix C. Meanwhile, each basis map should also be a linear
combination of the accepted elemental maps. The residual of fitting is minimized while the trial
structures are altered according to the next simplex downhill iteration. At the convergence of the
fitting, map correlation coefficients are evaluated. The final trial structures are considered to be the
refined heterogeneous structures. The final coefficient matrix C contains the compositions of the
mixtures in matrix A.



tion of a small number of m maps, in which each of the m maps

results from a homogeneous chemically meaningful structural

species. The jth observation (where j = 1, . . . , N) can therefore

be written as

Aj ¼
Pm
i¼1

Bicij: ð1Þ

B1–Bm denote m basis maps, each of which represents a

distinct structural species. Together, they account for all of

the maps in matrix A. cij is the ith coefficient of the linear

combination for the jth observation.

Our goal is to obtain this small set of m distinct structures

that would produce the corresponding basis maps B1–Bm and

to concomitantly solve the coefficient sets Cj = (c1j, . . . , cmj)

for all N observations. Since both Bi and Cj are to be deter-

mined, this presents a large nonlinear fitting problem with MN

data points and m(M + N) unknowns. Since M >> N, the data-

to-parameter ratio is approximately N/m, a practical limit

of which is presented below. This purely algebraic problem

posed in dynamic crystallography has no unique solution if

no structural knowledge enforces B1–Bm being images of

chemically sensible structures. A complete and direct solution

may be difficult. Here, we propose and implement a strategy

aimed at a satisfactory solution to this problem through

iterative refinement, under the assumption that m is small.

If this assumption does not hold, that is too many structural

conformations coexist to allow clean resolution, a different

strategy is required (example 2).

2.2. Singular value decomposition

The first questions are as follows. Do the observed maps

in A represent structural change? If so, do their differences

depend on the controlled variable or on some other factors?

Does the variation arise from a simple linear transition from a

beginning to an end state? If not, how many distinct structures

coexist in the observation matrix A? Obtaining a correct

estimate of m alone is important in many projects. We apply

SVD to the data matrix A.

The SVD approach in linear algebra is a robust process to

factorize a rectangular matrix. It has been widely used for

signal processing (Henry & Hofrichter, 1992) in many disci-

plines of science and has been successfully adapted to analyze

crystallographic data (Schmidt et al., 2003; Rajagopal, Schmidt

et al., 2004). If an M � N data matrix A, where M >> N, is

factorized by SVD (Fig. 2), then

A ¼ U W VT: ð2Þ

The matrix U has the same M � N shape as A. Each column

of U retains the format of a (difference) electron-density map,

but has been decomposed such that it cannot be represented

by any linear combination of maps in the other columns.

The N maps in U are denoted ‘elemental maps’, which are
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Figure 3
One-dimensional simulation of difference electron density in two observations. One atom moves from its starting position (open circle) to two distinct
new conformations (black dots) by different distances. The electron density of the atom at the reference position is represented by a Gaussian curve with
a peak amplitude of 1 and a deviation of �, shown as a thin line in black. The electron densities resulting from the two displaced conformations present in
different proportions are distinctly different, as shown by thin lines in red and purple. The thick lines are the difference electron density obtained by
subtracting the initial reference electron density. Observation 1 in red shows two equally strong positive peaks separated by a negative peak, despite the
fact that one conformation is four times more populated than the other. Observation 2 in purple shows only one pair of large positive–negative peaks.
The minor conformation on the right, although at 40%, barely generates any positive density owing to its much smaller displacement. (a) represents an
ideal scenario in which all molecules in the initial state have entered a reaction pathway and thus the reference structure is not present in the mixture.
Although easier to understand, this case is rarely found in practice. The red observation 1 results from a mixture at a 20:80% = 1:4 ratio of the two
displaced conformations and the purple one is a 60:40% = 3:2 mixture. (b) illustrates a more realistic scenario in which the reference structure contributes
75% to both observations. That is to say, only the remaining 25% of molecules have entered the reaction. The red observation contains 5:20% = 1:4 of the
displaced conformations, while the purple observation contains 15:10% = 3:2. In this case, the electron-density maps (thin lines) are all very similar,
except for differences in the tails of some peaks. In contrast, the difference maps (thick lines) are more revealing in representing structural changes. In
addition, the two thin red lines in (a) and (b) differ in shape, as do the two thin purple lines. This illustrates the fact that the electron-density maps are also
affected by the occupancy of the reference structure. However, the difference maps (thick lines) are only sensitive to the composition of the displaced
conformations. The shapes of the difference maps, including the points of zero crossing, are not affected by the total extent of reaction initiation. This
demonstrates another advantage of the difference map in describing structural changes in addition to its sensitivity.



independent of one another or, in algebraic terms, ortho-

normal. Notice that these elemental maps differ from the basis

maps B1–Bm in (1). Basis maps are images of distinct chemical

structures that are related by a reaction scheme, while an

elemental map usually does not reflect a single chemically

meaningful structure. Unlike elemental maps, basis maps are

not necessarily orthonormal to one another. See example 3 for

examples of elemental maps, which may feature differences

in spatial resolution, mutations or space group or differences

between subunits related by NCS. The square N�N matrix W

contains all zeros except for N positive values on its major

diagonal, known as the singular values. The magnitude of a

singular value can be thought of as a weight or significance of

its corresponding elemental map. Matrix V is also N � N in

shape, but its transpose VT must be used in multiplication with

the other matrices. Each column of V, that is each row of VT,

contains the relative composition of an elemental map as a

function of the controlled variable, e.g. a time course or a

temperature variation. This function also reveals whether the

presence of an elemental map is correlated with factors other

than the controlled variable, which is used as a powerful

means of identifying systematic variations or errors such as

radiation damage (example 3). A singular triplet denotes (i)

an elemental map Uk, (ii) its singular value wk and (iii) the

composition function Vk corresponding to the elemental map,

where k = 1, . . . , N. Uk and Vk are also referred to as the left

and right singular vectors, respectively.

Singular triplets are often sorted in descending order of

their singular values wk. The trailing insignificant singular

triplets can be eliminated with little loss of signal but with

very effective noise reduction. The number n of the remaining

significant singular triplets is the effective rank of the data

matrix A, where n < N. All possible linear combinations of

these n significant elemental maps define the range of matrix

A. It can be shown that in a least-squares sense a linear

combination of the n elemental maps in matrix U would

satisfactorily reproduce the major features in each and every

observed map in matrix A and yield a noise-filtered matrix A0.

The jth column of matrix A0, that is the jth noise-filtered map,

is

A0j ¼
Pn
k¼1

Ukwkvjk; ð3Þ

where vjk is an item of Vk, the relative composition of the kth

elemental map in the jth observation. The singular value wk

behaves as a weight in forming the coefficient wkvjk for the

linear combination.

It is also guaranteed that any possible map of a homo-

geneous structural solution cannot exceed the range of matrix

A and must also be a linear combination of the n significant

elemental maps. Thus, a close representation of a basis map Bi

can be written as

B0j ¼
Pn
k¼1

Ukwkyik; ð4Þ

where yik is the relative composition of the kth elemental map

in the ith basis map. These quantities are not derived from

SVD analysis: rather, they describe the desired solutions.

Again, the singular value wk functions as a weight in forming

the coefficient wkyik for the linear combination. These coeffi-

cients of the elemental maps determine the qualitative

features of a basis map. Combining equations (1–4) above, we

obtain an important relationship,

Cj � Yk ¼ vjk; ð5Þ

where Yk = (y1k, . . . , ymk). The dot product of two solution

vectors Cj and Yk is constrained by the result of SVD analysis,

vjk. In other words, the qualitative features of the observed

maps characterized by Vk and the basis-map features deter-

mined by Yk are related by the concise relationship (5) for

j = 1, . . . , N and k = 1, . . . , n. Each Yk can be easily obtained

given trial vectors C1–CN during refinement. Since the data-to-

parameter ratio of the solution is given by N/m, where N > m,

solving m independent structures from N observed maps is a

substantially overdetermined linear problem.

In summary, SVD analysis firstly acts as an effective noise

filter, secondly determines n � m, the upper bound of co-

existing structural species in the observation matrix A, thirdly

identifies and removes systematic errors (example 3) and

fourthly provides guidance for the search range of subsequent

analyses including structural refinement, which takes the form

of a concise restraining relationship between two solution

vectors (5).

2.3. Real-space refinement against multiple difference maps

Since a direct solution of Bi and Cj in (1) is not straight-

forward, it would require initial trial structures for all

heterogeneously mixed species in the observed maps in matrix

A. Trial basis maps Bi are then calculated from the trial

structures (Fig. 2). The subsequent fitting of linear combina-

tions of basis maps with observed maps is essentially a real-

space refinement. The difficulty in this real-space refinement

of multiple conformations, each with an unknown occupancy

in Cj, against multiple difference maps in matrix A is illu-

strated by two simulations containing only one atom in each

of two distinct conformations (Fig. 3). The simulated one-

dimensional difference ‘maps’ with different occupancies for

each conformation demonstrate the combined effect of

occupancy and atomic displacement. This simulation clearly

suggests firstly that refinement of displacements and their

occupancies against multiple observations must be carried out

simultaneously in order to explain all experimental difference

maps, secondly that difference maps are far more sensitive

to small structural changes than electron-density maps

(Henderson & Moffat, 1971) and thirdly that the features in a

difference map are independent of the total occupancy of all

conformations displaced from the initial reference state. Here,

the term ‘small structural change’ refers to small atomic

displacements occurring in only a small portion of a larger

structure and to only a small fraction of all molecules. When

one or more of these small quantities approaches zero, ‘small

structural change’ becomes undetectable. The threshold of

detectability is dictated by the magnitude of noise in matrix A.
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Computationally, this real-space refinement protocol is a

multi-parameter minimization between the observed differ-

ence maps in matrix A or the SVD-filtered maps in A0 (3) and

linear combinations of the calculated difference maps of the

distinct structures. This least-squares procedure is identical to

conventional curve fitting except that it takes place in multiple

three-dimensional real spaces simultaneously. This minimiza-

tion process adjusts both trial conformations and their co-

efficients in linear combinations in order to synthesize

difference maps that are as close to the observed maps as

possible. When all observations are accounted for at the

convergence of the minimization, refined structures are

achieved in a least-squares sense and their compositions are

determined. Many options are available for effective imple-

mentation of this multi-parameter minimization. However,

this work has not yet included such efforts. For a proof-of-

concept implementation, we take advantage of the simplicity

of the downhill simplex method (Nelder & Mead, 1965).

Our approach fundamentally differs from the commonly

used alternative conformations and other models of confor-

mational polymorphism (Gros et al., 1990; Levin et al., 2007;

Lang et al., 2010) by increasing the number of observed data

points instead of the number of parameters to fit in the multi-

parameter minimization. Previous approaches have attempted

to extract conformational polymorphism or to account for

thermal motions from a single data set obtained under a fixed

condition. Thus, an isolated static ensemble of structures is no

more than a time-averaged snapshot of a dynamic system and

does not display a trend of structural change, nor does it

suggest the cause of the change. To address the challenge of

structure refinement in dynamic crystallography, here we

replace the one structure or one ensemble to one data set

tradition in structural refinement by our implementation of m

structures to N data sets, where N > m (example 1).

2.4. Moving-target refinement

The real-space refinement that we propose replaces the

need for direct solution of Bi and Cj from the large nonlinear

system presented in (1). However, in practice, the multi-

parameter minimization is also difficult to perform. The

central problem offered by the large nonlinear system in (1) is

how to simultaneously solve for both a small set of m distinct

structural species that correspond to basis maps B1–Bm and

coefficient vectors C1–CN for all observed difference maps

A1–AN. A possible mathematical (but not chemically plau-

sible, and thus false) solution to this system is to allow the ith

structural species to become arbitrary by adjusting all of the

ith coefficients in C1–CN to near zero. That is to say, if a

structural species makes a negligible contribution to all

observed maps in matrix A, this species can adopt an arbitrary

structure. In practice such arbitrary solutions occur frequently

unless we follow the guidance given by the SVD result (5).

One workable technique to avoid arbitrary solutions is to

synthesize trial basis maps from n elemental maps according

to the current chemically plausible trial structures and to

minimize differences between the trial basis maps and the trial

structures in the upcoming refinement cycle by improving the

trial structures. That is to say, the refinement target includes

not only the experimental observations but also some trial

basis maps synthesized on-the-fly (Fig. 2). Unlike the fixed

experimental maps, a synthesized map is a moving target: it

evolves with the trial structures as refinement proceeds.

However, this moving target must be a linear combination of

the elemental maps and therefore must remain within the

range of matrix A. This moving-target strategy incorporates

the SVD result into the minimization procedure and serves as

a powerful constraint to prevent arbitrary solutions.

2.5. Minimal parameterization of macromolecular structures

This topic lies largely outside the scope of this article.

However, it is a necessity to render the multi-structural

refinements presented here computationally more feasible.

We briefly describe the approach of minimal parameterization

and will present it elsewhere in greater detail.

All structure-refinement programs require stereochemical

restraints to maintain a nearly ideal geometry for macro-

molecular structures during refinement (Adams et al., 2010;

Afonine et al., 2012). The stringency of these restraints

(Grosse-Kunstleve et al., 2004) suggests that three Cartesian

coordinates per atom overparameterize a macromolecular

structure. Overparameterization and stereochemical restraints

are two conflicting forces in complex structural refinement:

reducing one would lessen the requirement for the other.

We adopt the commonly used concept of minimal, or near-

minimal, parameterization of macromolecular structure (Rice

& Brünger, 1994), in which we seek to maintain the ideal

geometry of a structure and to simplify or even eliminate

stereochemical restraints. ‘Minimal parameterization’ has to

be interpreted in relation to the spatial resolution of the

crystal structure. Because crystal structures in a typical reso-

lution range, say 1.5–3 Å, exhibit very narrow distributions of

covalent bond lengths and angles, many degrees of freedom

can be eliminated (at least in the early stages of refinement).

In the scheme of minimal parameterization, the most

fundamental parameter is the rotation of a chemical group

around a defined axis. At the termini of a main chain or the

end of a side chain this angular parameter is simply the torsion

angle about a single chemical bond. In the middle of a chain, a

limited rotation is defined about an axis connecting two atoms

separated by one or more other atoms in the chain, not about

a chemical bond. For example, a peptide plane is rotated

slightly about an axis connecting two consecutive C� atoms.

To move a C� atom, two peptides are rotated slightly about

the axis connecting the first and the third C� atoms. Minimal

parameterization maintains the planarity of aromatic rings,

e.g. phenyl, imidazole, indole and pyrrole rings, as well as

guanidinium and peptide groups, thus requiring no separate

planarity restraints on these groups. On average, each protein

side chain requires only 1.75 torsion angles, in contrast to 13

Cartesian coordinates, to describe all possible conformations

of non-H atoms. Each residue needs 25 Cartesian coordinates,

but less than four angular parameters. The minimal
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parameterization of a protein structure

in combination with the locality of real-

space refinement (x2.1) potentially

confines the numerical process of mini-

mization to a small scale.

2.6. Goodness of fit in real-space
refinement

Several statistical measures are

employed to evaluate the goodness of

fit in real space. The commonly used

root-mean-squared deviation (r.m.s.d.)

between the observed and modeled

values is normalized in Rnrmsd. The

normalized mean modulus deviation

Rnmmd is sometimes favored and is well

known as the R factor. These are

defined in real-space refinement as

Rnmmd ¼

P
jkj��o ���cjP
jkj��oj

ð6Þ

and

Rnrmsd ¼

P
ðkj��o ���cÞ

2P
ðkj��oÞ

2

" #1=2

; ð7Þ

where the summations are over all grid

points of all maps involved in the

refinement for an overall measure or

over each map for individual evaluation.

��o and ��c are observed and calcu-

lated difference electron densities,

respectively. Specifically, ��o comes

from either the entire matrix A or

individual columns of matrix A. More
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Figure 4
Difference electron-density maps near the
PaBphP chromophore. Positive and negative
electron densities relative to the dark structure
are shown in green and red, respectively. The
three maps in the top row are calculated from
three refined structural species: L1, L2 and
L3, respectively. Each other row denotes a
different temperature. The ball-and-stick
model in yellow shows the chromophore in its
dark Pfr state. The models in green show the
refined chromophore structures. Surrounding
protein side chains also undergo conformation
changes in concert with the chromophore, but
are omitted here for clarity. The array of
maps contains eight representative tempera-
ture settings out of the 14 in total. Only the
dark-state chromophore is shown. The first
column of maps show the NCS-averaged maps,
which are the target maps in real-space
refinement. The second column of maps are
linear combinations of the three basis maps
shown in the top row. The coefficients used in
the composition are presented in Fig. 5. The
third column shows the residual of fitting.



often, the SVD-filtered matrix A0 is used (3). ��c is synthe-

sized from m calculated maps from the refined structures using

the refined coefficient sets Cj (1). kj is a scale factor between

observed and calculated maps, which is usually specific to each

jth observed map in matrix A.

It is obvious that fitting a difference electron-density map

results in a far greater normalized residual than fitting an

electron-density map. Because difference electron densities

are in the summation in the denominators of (6) and (7), these

R factors typically have much greater numerical values than

the equivalent R factors with electron densities in the

denominators. In addition, the scale factors kj certainly affect

these R factors. Alternatively, the real-space correlation

coefficient (CC) between ��o and ��c is often a better indi-

cator of the quality of a fit given the noisy nature of difference

signals. The acceptable CC critically depends on the mask of

electron-density maps. In our experience, a CC in the range

0.5–0.7 indicates a good fit for a difference map within 10 Å

around the active site (examples 1 and 2), while a CC of >0.9 is

expected for reasonable fitting of an individual side chain

against a 2Fo � Fc map (example 3).

In summary, we integrate four key technical components in

our implementation of the joint real-space analysis of a large

number of heterogeneous maps: (i) SVD identifies principal

components and reduces experimental noises in a large unified

data matrix A, (ii) multiple structures are simultaneously

refined in real space against all observed maps and (iii) the

incorporation of synthesized moving-target trial maps guides

the refinement within a valid search range. Finally, (iv)

minimal parameterization of the real-space structures (Rice &

Brünger, 1994) serves to significantly ease the requirement of

stereochemical restraints during this large-scale structural

refinement. We now apply this approach to examples of

dynamic crystallographic data acquired by different experi-

mental techniques.

3. Results

3.1. Example 1: temperature-scanning cryocrystallography

At a sufficiently low temperature a reaction may effectively

stall at a certain intermediate step, which allows certain

structural intermediates to accumulate at observable concen-

trations. Since the rates of individual reaction steps are

affected differently by temperature, different mixtures of

intermediates may be trapped at different temperatures. To

capture short-lived intermediates during the photoconversion

reaction in Pseudomonas aeruginosa bacteriophytochrome

(PaBphP), a ‘trap–pump–trap–probe’ strategy was employed

to collect light and dark data sets from photoactive crystals

of the PAS-GAF-PHY photosensory core at cryogenic

temperatures ranging from 100 to 180 K (Yang et al., 2011).

This temperature scan generates a total of 112 independent

Flight � Fdark difference maps derived from 14 light and six

corresponding dark data sets and from eight monomers in

the asymmetric unit related by NCS. In all maps difference

densities are tightly concentrated near the bilin chromophore.

It is immediately obvious that the features in the observed

difference maps vary continuously with pump temperature

and that photoreaction proceeds from the far-red-absorbing

Pfr ground state towards the red-absorbing Pr product state

(Yang et al., 2011) as the pump temperature rises (Fig. 4). We

may also conclude from the smoothly varying maps that the

number of distinct structural species is far less than the total

number of maps, that each difference map contains a mixture

of multiple structural species and that the relative composi-

tions of structural species vary with the pump temperature.

To demonstrate the effectiveness of our joint analysis of the

heterogeneous mixture in real space, we mask the densities to

consider only the volume within a 3 Å radius of a region that

contains the chromophore and some adjacent key protein

residues and subject the masked difference maps to SVD

analysis (x2.2). The data matrix A consists of 53 923 grid points

in each masked difference map and 14 NCS-averaged maps

(Fig. 4) at various pump temperatures. Applying SVD to

matrix A reveals several significant singular values, of which
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Figure 5
SVD and real-space refinement of PaBphP. The linear combination
coefficients wkvjk for the three most significant elemental maps k = 1, 2
and 3 are shown as red, green and blue curves, respectively, as a function
of the observed difference maps j. The labels on the horizontal axis are in
the format crystal ID-temperature. The red curve indicates that the top
elemental map k = 1 mostly exhibits features at temperatures of 160 K
and higher. During the transition period from 140 to 160 K, low-
temperature features represented by the elemental map k = 2 are
gradually replaced by high-temperature features in the elemental map
k = 1. At temperature settings lower than 140 K, structural changes are
mostly described by elemental maps k = 2 and 3. The white and two gray
areas show fractional concentrations of three refined structural species in
all difference maps. The darker gray represents L1. Its population falls to
nearly 0 at temperatures above 140 K. The lighter gray area is L3, which
starts to appear at 130 K and reaches its maximum of more than 60% at
high temperatures. The white area in between shows the population of
L2, which is always present and is mixed with other species at all
temperatures. Its maximum concentration exceeds 50% at 140–150 K.
The fractional concentration expressed here is with respect to the total
molecules that ever underwent photoconversion; thus, the sum over the
three fractions is always 1. In this sense, fractional concentration differs
from the occupancy as commonly used in the PDB. The black dots show
real-space correlation coefficients between the target and the recom-
posed maps (Fig. 4) as an indicator of the goodness of fit.



the top three stand out, indicating three major structures

(Fig. 5). We manually built three trial structures denoted L1,

L2 and L3 into the maps in matrix A (Yang et al., 2011),

followed by real-space refinement of a partial structure that

includes the biliverdin chromophore and its surrounding

protein residues. Additional constraints are applied during

refinement according to plausible interactions between the

protein and chromophore in each structure. At the conver-

gence of least-squares fitting, both atomic positions and the

fractional concentration of each structure are determined.

Structural heterogeneity is thereby resolved (Fig. 5).

Since no single data set arises from a single homogeneous

structure in the temperature-scanning experiments, existing

refinement-software tools are not capable of refining several

structures common to all data sets simultaneously. Conven-

tional refinement in reciprocal space would seek to refine four

alternative conformations (the ground state and three inter-

mediate structures L1, L2 and L3) against each of the 14 data

sets, with a total of 56 structures, which is clearly a case of

overfitting. There is no effective way to constrain the 14

ground-state structures to remain identical and refine a

common structure; nor can this be achieved for three inter-

mediates. As an example, using the conventional refinement

technique, each soaking time and pH setting resulted in an

independently refined structure in the study of the DNA

polymerase (Nakamura et al., 2012). More seriously, owing to

the limited extent of photolysis and reaction initiation in large

crystals, the occupancy of the dark state remains high in

the illuminated crystals. The total occupancy of these three

intermediates is estimated to be 15–30% in the various

temperature-dependent data sets. Conventional refinement

approaches are very insensitive to occupancy and it is even

harder to determine the conformations of species with low

occupancies. Low occupancy is also a common difficulty in

diffusion-based experiments under reasonable soaking times

and concentrations. Early stages of drug-screening experi-

ments often suffer from low-occupancy binding caused by the

poor affinity of drug leads yet to be optimized.

A practical limit on m is related to how structurally distinct

the m species are. An intermediate structure often differs only

slightly from its predecessor and successor. In order to isolate

these closely similar structural species, it is important to

ensure that the number of observations N > m. In this

example, N/m is nearly 5, which thus far sets a practical

lower limit. However, when the number of distinct species m

becomes large, increasing the number of observation data sets

N even more may result in a large unmanageable numerical

problem and thus is not always practical. In the next example,

we refine an entire molecule but analyze each data set with a

unique single structure.

3.2. Example 2: a transient asymmetric state of a dimeric
hemoglobin

In a time-resolved experiment, diffraction data are

collected while a reaction progresses at near-physiological

temperature following rapid reaction initiation in the crystal.

Nevertheless, as in any kinetic experiment, crystallographic

data at a given time point capture a mixture of structural

intermediates. The composition of the mixture evolves with

time in an ever-changing process (Fig. 1 and Supplementary

Movie 1).

To study cooperative changes in ligand-binding affinity

upon photodissociation of CO in the homodimeric hemo-

globin HbI from Scapharca inaequivalvis, a sequence of Laue

diffraction data sets were collected at 1.6 Å resolution at

various time delays ranging from 100 ps to 50 ms after a short

35 ps laser pulse had photodissociated the CO ligand (see

Knapp et al., 2006, for the experimental protocol). Although

the largest difference signals resulted from a rapid response

to CO dissociation and cluster near the heme region of both

subunits, additional difference densities are distributed

extensively throughout several more distant helices in the

globin (see Knapp et al., 2006, and Ren et al., 2012, for an

overview of the difference maps and SVD analysis).

When applying our real-space analysis protocol, we find

that the assumption in (1) does not hold for the entire dimeric

molecule. That is, the number m of distinct dimer structures
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Figure 6
Light–dark difference electron-density maps of dimeric S. inaequivalvis
hemoglobin upon photolysis of the CO form. Positive and negative
electron densities relative to the reference dark structure are shown in
green and red, respectively. The heme region in subunit B is shown. The
ball-and-stick model in yellow is the dark state and the green model is the
refined photoproduct at 100 ps. (a) Observed difference map at 1.6 Å
resolution contoured at �4�. (b) Difference map calculated from the
refined structure.



is too large and exceeds the capability of the algorithm.

However, if we restrict our real-space analysis to a local region

such as the heme-binding pocket of one subunit, we observe

that the conformational changes occur in several discrete steps

throughout the time course. The number of these distinct local

structures is small enough to be refined simultaneously by our

protocol. The same is true for the heme-binding pocket of the

other subunit and for other local regions. Real-space refine-

ment of several structures against a set of many difference

maps, each confined to a local region, has been demonstrated

in example 1 for a bacteriophytochrome. Therefore, we do not

repeat this example. The results for this hemoglobin example

show that the structural transitions in different local regions

are asynchronous. This temporal mismatch between structural

events in different local regions generates a large number of

intermediate dimer structures throughout the probed time

course. An alternative strategy considers an entire dimer as a

region but analyzes each time point as a unique single struc-

ture. Both strategies have been tested. The results of the two

strategies must be merged to form a more complete picture

describing the local and global structural changes throughout

the entire time course, which will be reported elsewhere.

This alternative strategy is particularly applicable to the

earliest time point of 100 ps since it appears that at this time

the photoproduct is still relatively homogeneous in structure,

in contrast to later time points in the sequence. At 100 ps it is

clear that CO has been dissociated and is positioned in the

distal-pocket docking site. The difference map (Fig. 6b)

calculated from a photoproduct model that reflects such a

change reproduces the strong signal associated with CO in the

observed difference map (Fig. 6a). However, owing to the

achievable experimental signal-to-noise ratio, the observed

difference signal associated with the heme motion is weaker

and disconnected, although the distribution of positive and

negative densities flanks the heme group as expected. To

execute real-space refinement, the heme group is para-

meterized under the minimal principle, in which the individual

pyrrole rings remain planar while the angles between their

normals are allowed to vary. After convergence via least-

squares fitting, the heme group is shifted towards the distal

site. The difference map calculated from the refined structure

(Fig. 6b) shows continuous positive and negative densities;

continuity is by-and-large absent in the observed difference

map (Fig. 6a). The correlation coefficient between the

observed and calculated maps is 0.53 around the heme group.

To achieve a higher correlation coefficient, the connectivity of

the calculated map would have to be broken and this in turn

would require sacrificing the planarity of the pyrrole rings.

Our minimal parameterization protocol does not allow

experimental errors to artificially distort the pyrrole rings even

in the absence of explicit stereochemical restraints (Grosse-

Kunstleve et al., 2004).

This real-space protocol enables us to confirm light-induced

CO dissociation and the general features of the structural

response at the heme group. It also reveals global structural

features in a transient asymmetric state that are directly

relevant to cooperative ligand binding in this homodimeric

hemoglobin (Ren et al., 2012). Although this refinement task

falls into the one structure to one data set tradition, these

scattered signals are usually too subtle to be confidently

modeled and refined using existing tools.

3.3. Example 3: mixed conformations in fluoroacetate
dehalogenases

A third example concerns a representative case in

structure–function studies that often involve a large number of

mutant and complex structures, where isomorphism is not

always available. The numerical resolution of heterogeneous

structural species unevenly distributed in multiple data sets

provides a means to jointly analyze many static data sets from

commonly practiced mutation studies and inhibitor screening

in drug discovery. The techniques of cocrystallization and

post-crystallization soaking in static crystallography generate

drug-induced structural changes and collectively provide

dynamic insights into protein function if analyzed from the

perspective of dynamic crystallography.

In the previous two examples, we analyzed difference

electron-density maps in which density values are distributed

symmetrically around zero. However, such an isomorphous

difference Fourier technique, which is very sensitive to weak

signal, is not always possible. In this example, we show that our

algorithms are equally applicable to electron-density maps

including 2Fo � Fc maps or Fo � Fc omit maps, in which

density values are distributed asymmetrically around zero and

structural signals are only associated with positive density

values. This approach could be applied to the DNA poly-

merase case (Nakamura et al., 2012).

Fluoroacetate dehalogenases catalyze the hydrolysis of

fluoroacetate into glycolate. To establish the structural and

dynamic basis for cleaving the carbon–fluorine bond, which is

the strongest covalent bond in organic chemistry, many high-

resolution static structures of the fluoroacetate dehalogenase

enzyme RPA1163 from Rhodopseudomonas palustris

CGA009 have been determined (Chan et al., 2011). Direct

inspection of the electron-density maps in the active site of the

enzyme reveals multiple conformations for several key resi-

dues and the substrate or product present in the active site.

However, the detail seems complex and it is difficult to refine

the occupancy of each conformation. Although the real-space

strategy presented in this paper is motivated by challenges in

analyzing time-resolved and temperature-scan data sets, we

here show that it can also apply to deconvolute the structural

heterogeneity present in an array of static structures.

From 19 structures of the fluoroacetate dehalogenase

enzyme determined at resolutions between 2.5 and 0.9 Å, we

assembled a total of 45 independently measured monomeric

structures (Chan et al., 2011). These structures include the wild

type, mutants and various complexes with substrate or

products in monoclinic, orthorhombic and tetragonal space

groups. To remove prior model bias, we calculated simulated-

annealing Fo � Fc omit maps (SAOMs) that omit several key

residues around the active site (Adams et al., 2010). The

SAOMs from all 45 monomers are aligned according to their
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active-site structures. These yield a data matrix A of 136 199

grid points (M) from 45 maps (N) around the active site to be

subjected to SVD analysis (x2.2). SVD yields seven significant

singular triplets. Interpretation of these elemental maps is

usually difficult, since they are not images of structurally

homogeneous species. The top elemental map (k = 1) can be

considered as an average map (Fig. 7a). Its composition (red

curve in Fig. 8) stands out well above all other components,

suggesting that overall the active-site structures agree well

despite differences in resolution, space group, mutations and

ligand-binding status. However, unlike the analysis of data

from the examples described above, several singular triplets in

this example are associated with systematic differences that

originate in the different sources of data. The elemental map

k = 2 (Fig. 7b) presents the distinction between high- and low-

resolution maps, as shown by the fact that the green compo-

sition curve w2vj2 (Fig. 8) largely correlates with the resolution

of each map (black dots). The elemental maps k = 3 and k = 5

(Figs. 7c and 7e) single out the unique features of the mutant

structure H280N and data obtained in the tetragonal space

Figure 7
Elemental maps of fluoroacetate dehalogenase structures. Green and red meshes are contoured at �3�, respectively, except in (a) k = 1, where the only
green contour is at 1.5�. The top elemental map k = 1 is an average of all 45 simulated-annealing omit maps and contains few areas of negative density.



group, respectively. It is most interesting that the elemental

map k = 4 (Fig. 7d) identifies a systematic difference between

chain A and chain B in the monoclinic space group and to

a lesser extent between chains A/C and chains D/B in the

orthorhombic space group. This difference is apparently

derived from NCS, but may have functional implications (Ren

et al., 2012).

Three distinct conformations in the active site are jointly

refined during the simultaneous fitting of 18 SAOMs of wild-

type monomers (Fig. 9). Their occupancies in each of the 18

monomeric structures are also refined. As shown in Table 1,

the three active-site conformations are populated very

differently in the 18 maps depending on the space group and

NCS. For example, conformation 2 is more populated in the

orthorhombic chain B and conformation 3 is only populated in

the monoclinic chain B. This analysis helps to unify aspects of

a seemingly complex structural interpretation and identifies a

consistent structural distinction between chains A and B.

4. Discussion

Protein conformation evolves in discrete steps along a reaction

pathway. However, the population of each distinct confor-

mation varies continuously as the reaction proceeds (Fig. 1 and

Supplementary Movie 1). Observations from such dynamic

processes inevitably involve heterogeneous structural species.

Our basic strategy is to analyze multiple observations jointly

in order to identify, extract and refine several constituents that

are constant in conformation but vary in population. Both the

constants and the variations are required to warrant a unique

solution to the problem (1). If the intermediate constituent

structures are largely disordered or adopt a wide distribution

in the conformational space, this strategy will be less effective.

At the opposite extreme, where little variation is observed in

map composition, redundant and correlated measurements,

although heterogeneous, do not contribute to the numerical

resolution of a mixture, which can be

understood as no unique solution to a

singular linear system. A cryo-trapping

experiment at a single temperature may

be difficult to interpret in detail if

heterogeneous structures are present,

because such an isolated observation

lacks the ability to reveal a trend. Thus,

coexisting features cannot be assigned

with high confidence to different

structural species. Resolution of this

difficulty provides the fundamental

rationale behind temperature-scanning

cryocrystallography (Yang et al., 2011).

Conventional structural refinement

in macromolecular crystallography is

now largely carried out in reciprocal

space (Adams et al., 2010; Afonine et al.,

2012), although real-space refinement

was more common in the early years

(Diamond, 1971). Small-scale real-

space refinement (Chapman, 1995) is

often performed in conjunction with

model fitting. It is a rather straightfor-

ward technique in which atoms need to

be moved into areas of higher electron

density in target maps such as 2Fo � Fc

or Fo � Fc omit maps while maintaining
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Figure 8
SVD analysis of multiple crystal structures of the fluoroacetate dehalogenase enzyme from
R. palustris. The linear combination coefficients wkvjk for the five most significant elemental maps
k = 1, 2, 3, 4 and 5 are shown in red, green, blue, magenta and cyan, respectively, as a function of the
jth simulated-annealing omit map. The other 40 less significant components are omitted for clarity.
The labels on the horizontal axis indicate wild type (WT) or mutant (Y219F, D110N, H280N and
W156H), apoenzyme (apo) or ligand complex (fac, fluoroacetate; goa, glycolate; fpp, 2-fluoro-
propanoate) and chain ID (A, B, C and D). The symbols – and = denote monoclinic space groups
under different soaking conditions; + and | denote orthorhombic and tetragonal space groups,
respectively. The structures in the monoclinic space group contain A and B chains in the asymmetric
unit, those in the orthorhombic space group contain A, D and C, B chains (which correspond to two
copies of the monoclinic A and B chains) and those in the tetragonal space group contain only the A
symmetry-related chains (one of its symmetry-related chains corresponds to the monoclinic B
chain). The black dots show the resolution limits of each structure.

Table 1
Refined fractional concentrations of three coexisting conformations.

See the legend to Fig. 8 for the format of the map labels.

Conformation

SAOM 1 2 3
Correlation
coefficient

WT�apo-A 0.712 0.096 0.192 0.863
WT�apo-B (Fig. 9b) 0.455 0.141 0.404 0.855
WT+apo-A (Fig. 9a) 0.752 0.216 0.033 0.906
WT+apo-D 0.684 0.261 0.054 0.903
WT+apo-C 0.707 0.230 0.063 0.914
WT+apo-B 0.646 0.321 0.034 0.919
WT�fac-A 0.925 0.075 0.000 0.907
WT�fac-B 0.822 0.179 0.000 0.890
WT+fac-A 0.707 0.213 0.080 0.927
WT+fac-D 0.520 0.352 0.128 0.918
WT+fac-C 0.650 0.260 0.090 0.930
WT+fac-B (Fig. 9c) 0.408 0.509 0.083 0.916
WT�goa-A 0.576 0.126 0.298 0.898
WT�goa-B 0.452 0.144 0.404 0.863
WT+goa-A 0.787 0.191 0.022 0.913
WT+goa-D 0.646 0.306 0.048 0.901
WT+goa-C 0.765 0.198 0.037 0.909
WT+goa-B 0.467 0.469 0.064 0.907



stereochemical restraints. Our approach of real-space refine-

ment in dynamic crystallography extends this significantly:

multiple structures and their compositions are refined conco-

mitantly against many (difference) electron-density maps

simultaneously. Although a difference refinement protocol in

reciprocal space can refine structures such as mutants and

ligand-bound forms (Terwilliger & Berendzen, 1995, 1996), it

is not effective for simultaneous refinement of multiple

conformations, especially when the occupancy of each

conformation is much lower than that of the coexisting parent

conformation. Furthermore, the difference refinement

protocol is not capable of refining one or more common

conformations against multiple data sets (example 1).

Whether our goal of refinement in dynamic crystallography

can be achieved in reciprocal space and whether it carries

greater advantage remain to be explored.

The difference refinement protocol (Terwilliger &

Berendzen, 1995, 1996) and many other treatments of struc-

tural polymorphism strictly hold the one structure or one

ensemble to one data set tradition in static crystallography.

For example, discrete alternative conformations are

commonly used to model a small number of coexisting

conformations with high occupancy for certain residues or

structural segments. The atomic displacement parameters are

also used to model atomic disorder and could suggest func-

tionally important motions (Lu et al., 2005). Possible thermal

motions could be included in structural refinement of an

ensemble to improve agreement with measured diffraction

data (Gros et al., 1990). Recent advances, such as ensemble

refinement (Levin et al., 2007), may explain disordered elec-

tron densities even better and help to visualize conformational

polymorphism (Lang et al., 2010). However, it is questionable

whether this additional structural information depicts func-

tional dynamics of proteins or merely reflects the uncertainty

in the data (Terwilliger et al., 2007). Table 2 summarizes

crystallographic techniques that acquire or model dynamic

structural information.
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Table 2
Crystallographic techniques that acquire or model dynamic structural information.

Technique Information Drawbacks

Atomic displacement parameters Thermal vibration Little relevance to function (Lu et al., 2005)
Alternative conformations Coexisting conformations Static
Ensemble refinement (Gros et al., 1990;

Levin et al., 2007)
Conformational polymorphism (Lang et al., 2010) More parameters and data limitation

(Terwilliger et al., 2007)
Structural comparison Structural differences Stable structures only
Chemical trapping Intermediate, especially after rate-limiting step† Difficulty in design
Cryotrapping Intermediate structure May alter reaction pathway
Time-resolved crystallography Intermediate and reaction mechanism Difficulty in rapid reaction initiation

† To capture an intermediate after a natural rate-limiting step that cannot accumulate to a sufficient concentration, chemical trapping is the only approach possible to slow down or to
stall the next step so that the original step is no longer rate-limiting.

Figure 9
Representative simulated-annealing omit maps of fluoroacetate dehalogenase. Three jointly refined conformations are shown as stick models in yellow.
The color saturation level is determined by the refined fractional concentration (Table 1). Fainter colors denote lower concentrations. Only His155,
Lys181 and Trp185 are shown in the foreground. The green mesh is contoured at 1.5�. See the legend to Fig. 8 for the format of the map labels.
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